Almost Admissible Measurability for Co-embedded Primes

نویسنده

  • M. LAFOURCADE
چکیده

Let ‖z‖ 3 √ 2 be arbitrary. The goal of the present article is to derive graphs. We show that Borel’s condition is satisfied. The groundbreaking work of C. Sasaki on quasi-Maxwell–Ramanujan equations was a major advance. This could shed important light on a conjecture of Boole.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Ternary Goldbach Problem with Primes in independent Arithmetic Progressions

We show that for every fixed A > 0 and θ > 0 there is a θ = θ(A, θ) > 0 with the following property. Let n be odd and sufficiently large, and let Q1 = Q2 := n 1/2(log n)−θ and Q3 := (log n) θ. Then for all q3 ≤ Q3, all reduced residues a3 mod q3, almost all q2 ≤ Q2, all admissible residues a2 mod q2, almost all q1 ≤ Q1 and all admissible residues a1 mod q1, there exists a representation n = p1+...

متن کامل

On the ternary Goldbach problem with primes in arithmetic progressions of a common module

For A, ε > 0 and any sufficiently large odd n we show that for almost all k ≤ R := n 1/5−ε there exists a representation n = p 1 + p 2 + p 3 with primes p i ≡ b i mod k for almost all admissible triplets b 1 , b 2 , b 3 of reduced residues mod k.

متن کامل

Hardy-littlewood Constants Embedded into Infinite Products over All Positive Integers

Abstract. A group of infinite products over low-order rational polynomials evaluated at the sequence of prime numbers is loosely called the HardyLittlewood constants. In this manuscript we look at them as factors embedded in a super-product over primes, semiprimes, 3-almost primes etc. Numerical tables are derived by transformation into series over k-almost prime zeta functions. Alternative pro...

متن کامل

On Admissible Constellations of Consecutive Primes

2 . Admissible constellations . Let us start with a formal definition : al, 122, . . ., ak is an admissible sequence of integers if the ai's do notform a complete set of residues mod p for any prime p.-Clearly only the primes p 5 k have to be considered . A sequence which is not admissible is called inadmissible . Beginning with the admissible sequence (ai) we now search for constellations of i...

متن کامل

Rational Representations of Primes by Binary Quadratic Forms

Let q be a positive squarefree integer. A prime p is said to be q-admissible if the equation p = u2 + qv2 has rational solutions u, v. Equivalently, p is q-admissible if there is a positive integer k such that pk2 ∈ N , where N is the set of norms of algebraic integers in Q( √ −q). Let k(q) denote the smallest positive integer k such that pk2 ∈ N for all q-admissible primes p. It is shown that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013